Genomic Architecture of the Two Cold-Adapted Genera Exiguobacterium and Psychrobacter: Evidence of Functional Reduction in the Exiguobacterium antarcticum B7 Genome
نویسندگان
چکیده
Exiguobacterium and Psychrobacter are bacterial genera with several cold-adapted species. These extremophiles are commonly isolated from the same habitats in Earth's cryosphere and have great ecological and biotechnological relevance. Thus, through comparative genomic analyses, it was possible to understand the functional diversity of these psychrotrophic and psychrophilic species and present new insights into the microbial adaptation to cold. The nucleotide identity between Exiguobacterium genomes was >90%. Three genomic islands were identified in the E. antarcticum B7 genome. These islands contained genes involved in flagella biosynthesis and chemotaxis, as well as enzymes for carotenoid biosynthesis. Clustering of cold shock proteins by Ka/Ks ratio suggests the occurrence of a positive selection over these genes. Neighbor-joining clustering of complete genomes showed that the E. sibiricum was the most closely related to E. antarcticum. A total of 92 genes were shared between Exiguobacterium and Psychrobacter. A reduction in the genomic content of E. antarcticum B7 was observed. It presented the smallest genome size of its genus and a lower number of genes because of the loss of many gene families compared with the other genomes. In our study, eight genomes of Exiguobacterium and Psychrobacter were compared and analysed. Psychrobacter showed higher genomic plasticity and E. antarcticum B7 presented a large decrease in genomic content without changing its ability to grow in cold environments.
منابع مشابه
Genome sequence of Exiguobacterium antarcticum B7, isolated from a biofilm in Ginger Lake, King George Island, Antarctica.
Exiguobacterium antarcticum is a psychotropic bacterium isolated for the first time from microbial mats of Lake Fryxell in Antarctica. Many organisms of the genus Exiguobacterium are extremophiles and have properties of biotechnological interest, e.g., the capacity to adapt to cold, which make this genus a target for discovering new enzymes, such as lipases and proteases, in addition to improvi...
متن کاملReconstruction of the Fatty Acid Biosynthetic Pathway of Exiguobacterium antarcticum B7 Based on Genomic and Bibliomic Data
Exiguobacterium antarcticum B7 is extremophile Gram-positive bacteria able to survive in cold environments. A key factor to understanding cold adaptation processes is related to the modification of fatty acids composing the cell membranes of psychrotrophic bacteria. In our study we show the in silico reconstruction of the fatty acid biosynthesis pathway of E. antarcticum B7. To build the stoich...
متن کاملA Proteomic Perspective on the Bacterial Adaptation to Cold: Integrating OMICs Data of the Psychrotrophic Bacterium Exiguobacterium antarcticum B7
Since the publication of one of the first studies using 2D gel electrophoresis by Patrick H. O'Farrell in 1975, several other studies have used that method to evaluate cellular responses to different physicochemical variations. In environmental microbiology, bacterial adaptation to cold environments is a "hot topic" because of its application in biotechnological processes. As in other fields, g...
متن کاملOligomerization as a strategy for cold adaptation: Structure and dynamics of the GH1 β-glucosidase from Exiguobacterium antarcticum B7
Psychrophilic enzymes evolved from a plethora of structural scaffolds via multiple molecular pathways. Elucidating their adaptive strategies is instrumental to understand how life can thrive in cold ecosystems and to tailor enzymes for biotechnological applications at low temperatures. In this work, we used X-ray crystallography, in solution studies and molecular dynamics simulations to reveal ...
متن کاملCrystal Structure and Functional Characterization of an Esterase (EaEST) from Exiguobacterium antarcticum
A novel microbial esterase, EaEST, from a psychrophilic bacterium Exiguobacterium antarcticum B7, was identified and characterized. To our knowledge, this is the first report describing structural analysis and biochemical characterization of an esterase isolated from the genus Exiguobacterium. Crystal structure of EaEST, determined at a resolution of 1.9 Å, showed that the enzyme has a canonica...
متن کامل